

On Low-Capture-Power Test Generation for Scan Testing
Xiaoqing Wen

1, Yoshiyuki Yamashita
1, Seiji Kajihara

1, Laung-Terng Wang
2,

Kewal K. Saluja
3, and Kozo Kinoshita

4
1 Dept. of CSE, Kyushu Institute of Technology, Iizuka 820-8502, Japan, {wen, kajihara}@cse.kyutech.ac.jp

2 SynTest Technologies, Inc., 505 S. Pastoria Ave., Suite 101, Sunnyvale, CA 94086, USA, wang@syntest.com
3 Dept. of ECE, 1415 Engineering Drive, University of Wisconsin - Madison, Madison, WI 53706, USA, saluja@engr.wisc.edu

4 Faculty of Informatics, Osaka Gakuin University, Suita 564-8511, Japan, kozo@utc.osaka-gu.ac.jp

Abstract

Research on low-power scan testing has been focused on
the shift mode, with little or no consideration given to the
capture mode power. However, high switching activity
when capturing a test response can cause excessive IR drop,
resulting in significant yield loss. This paper addresses this
problem with a novel low-capture-power X-filling method
by assigning 0’s and 1’s to unspecified (X) bits in a test
cube to reduce the switching activity in capture mode. This
method can be easily incorporated into any test generation
flow, where test cubes are obtained during ATPG or by X-
bit identification. Experimental results show the effective-
ness of this method in reducing capture power dissipation
without any impact on area, timing, and fault coverage.

1. Introduction

Integrated circuit testing based on the full-scan methodol-
ogy and automatic test pattern generation (ATPG) is the
most widely adopted test strategy that is well supported by
test engineers, tool vendors, and tester makers. In a full-
scan sequential circuit, scan flip-flops replace all functional
flip-flops and operate in two modes: shift and capture. In
shift mode, scan flip-flops are connected into shift registers
or scan chains directly accessible from a tester. This mode
is used to load a test vector through shift-in or observe a
test response through shift-out, for the combinational por-
tion of the sequential circuit. In capture mode, scan flip-
flops operate as functional flip-flops and load the test re-
sponse of the combinational portion to a test vector into
themselves preparatory to shift-out later in shift mode. As a
result, testing a full-scan sequential circuit is reduced to
testing its combinational portion, in that now it is only nec-
essary to generate test vectors for the combinational portion
with a combinational ATPG program [1].

Despite its usefulness, the applicability of scan testing is
increasingly being challenged due to the following three
problems: test data volume, test application time, and test
power dissipation. The first two problems are caused by
larger gate and flip-flop counts, longer scan chains, and the
use of complex fault models, all inevitable in the deep sub-
micron (DSM) era. Several approaches, such as built-in
self-test (BIST), test compaction, multi-capture clocking,
and decompression-compression, have been proposed to
address the problems of test data volume and test applica-
tion time. In this paper, we focus on the test power dissipa-
tion problem.

The power dissipation of a CMOS circuit consists of static
dissipation due to leakage current and dynamic dissipation
due to switching activity, with the latter being dominant.
Dynamic power dissipation in full-scan testing occurs in
both shift mode and capture mode. In shift mode, a test vec-
tor is shifted into all scan chains of a full-scan circuit, one
bit by one bit. This results in shift power dissipation. In
capture mode, the test response of the combinational por-
tion of the full-scan circuit to a test vector is loaded into all
flip-flops, replacing the test vector that the flip-flops cur-
rently contain. This results in capture power dissipation,
whenever the test vector and its corresponding test response
have opposite logic values at some flip-flips.

Generally, test power dissipation, consisting of both shift
and capture power dissipation, is significantly higher than
functional power dissipation [2]. This is especially true for
high-speed and high-density DSM integrated circuits with
the system-on-a-chip (SoC) scheme [3]. Excessive test
power dissipation may permanently damage a circuit under
test, reduce its reliability due to accelerated electromigra-
tion, or result in yield loss due to faulted test results caused
by IR drop [4]. Circuit damage and reliability degradation
are mostly caused by excessive heat due to shift power dis-
sipation, while significant yield loss can also be caused by
excessive capture power dissipation.

Previous techniques for reducing test power dissipation
have focused mostly on reducing shift power dissipation
during test application, based on four major approaches:
scheduling, test vector manipulation, circuit modification,
and scan chain modification. Test scheduling [2, 5] takes
the power budget into consideration when selecting mod-
ules to be tested simultaneously. Test vector manipulation
includes power-aware ATPG [6, 7], static compaction [8],
test vector modification [9], test vector reordering [10], test
vector compression [11], and coding [12]. Circuit modifica-
tion includes transition blocking [13] and clock gating [14].
Scan chain modification includes scan chain reordering [11,
15], scan chain partitioning [16], and scan chain modifica-
tion [17]. Techniques tailored for BIST applications, such
as toggle suppression [18] and low-power test pattern gen-
eration [19], have also been proposed.

In addition to shift power dissipation, capture power dissi-
pation is also part of test power dissipation in scan testing,
as illustrated in Fig. 1. In shift mode, test vector A is shifted

through all scan flip-flops in the scan chain with several
hundreds to several thousands of clock cycles, depending
on the scan chain length. In capture mode, test response B is
loaded into scan flip-flops to replace the current test vector
A. This is done in one or multiple clock cycles, depending
on whether the multi-capture clocking scheme is used.

Shift Power

Combinational
Portion

Scan
FFs

A B

A

Capture Power

Shift Power

Combinational
Portion

Scan
FFs

A B

A

Capture Power

Fig. 1 Two Types of Test Power Dissipation.

Although capture power dissipation has less impact on the
total heat dissipation than shift power dissipation, it may
nonetheless cause significant yield loss as explained below.
High switching activity in capture mode at the scan flip-
flops due to the difference between A and B may result in
instantaneously excessive IR drop, causing a faulted test
response B’ ≠ B to be loaded into the scan flip-flops. This
results in yield loss, even though the excessive capture
power dissipation does not cause too much heat dissipation.

For example, in one recently reported case, a 3M-gate in-
dustrial circuit passed all functional tests and all scan chain
flush tests but showed un-repeatable behaviors only in cap-
ture mode during scan testing. Detailed analysis revealed
that the circuit had multiple functional clocks, each driving
a portion of the circuit; but only one test clock was used to
drive all flip-flops in the circuit during scan testing. IR drop
caused by high switching activity due to many flip-flops
operating simultaneously was the reason for the yield loss.

The above explanation and example suggest that it is not
sufficient to reduce only shift power dissipation. Capture
power dissipation should also be reduced, especially in or-
der to avoid yield loss caused by faulted test results. The
ultimate solution for this is to reduce the number of flip-
flops that can operate simultaneously. For a single-clock
circuit, this can be achieved by selective clock gating. How-
ever, its impact on physical design is high. For a multiple-
clock circuit, this can be achieved by either the one-hot or
the multi-capture clocking scheme. However, the former
suffers from large test data volume and the latter suffers
from complicated ATPG with high memory consumption as
well as the need of controlling multiple test clocks. These
disadvantages motivated us to propose a new solution for
reducing capture power dissipation, which should be simple,
effective, and of no impact on physical and test design flows.

We notice the fact that many test cubes, i.e., test vectors
with unspecified bits (X-bits), are usually generated either
during ATPG [1] or obtained by X-bit identification [20]
from a set of fully-specified test vectors. In this paper, we

propose a low-capture-power (LCP) X-filling method for
assigning 0’s and 1’s to the X-bits in a test cube so that the
number of transitions at the outputs of scan flip-flops in
capture mode for the resulting fully-specified test vector is
reduced. Test vectors obtained by the LCP method have
low capture power dissipation, resulting in reduced yield
loss caused by faulted capture operations. As a totally soft-
ware-based solution, the LCP method has no physical de-
sign impact and can be easily incorporated into any test
generation flow.

The rest of the paper is organized as follows. Section 2 de-
scribes the research background. Section 3 presents the
LCP X-filling method. Section 4 shows experimental results,
and Section 5 concludes the paper.

2. Background

2.1 Test Cube Handling

A general ATPG procedure repeats the operations of select-
ing an undetected fault to produce a test vector for it. The
result is usually a test cube with unspecified bits (X-bits).
This test cube can be processed either immediately after its
generation as in dynamic compaction or together with other
test cubes in a post-ATPG operation as in static compaction,
for the purpose of reducing the test set size or test power
dissipation [1].

Note that test cubes processed in static compaction can also
be obtained by X-bit identification [20] from a set of fully-
specified test vectors. It has been shown that a significant
percentage of bits, as high as 90% in some cases, in a fully-
specified test vector set can be turned into X-bits without
affecting its fault coverage.

The fundamental operation in test cube handling during
dynamic compaction or static compaction is to determine
0’s and 1’s for the X-bits in a test cube. This operation is
called X-filling in this paper. Obviously, different X-filling
methods have different impact on test data volume, test
application time, and test power.

2.2 Previous X-Filling Methods

Generally, there are three approaches to X-filling: random,
algorithmic, and merge-based. Random X-filling assigns
0’s and 1’s randomly to X-bits in a test cube. Algorithmic
X-filling determines logic values for the X-bits in a test cube
in a more sophisticated way in order to better achieve a
specific goal. Merge-based X-filling determines the logic
value for an X-bit in a test cube depending on the logic
value of the corresponding bit in another test cube to be
merged with. For example, merging test cube t1 1X0 with
test cube t2 11X will cause assigning 1 to the X-bit in t1 and
0 to the X-bit in t2, resulting in one test vector 110.

Algorithmic X-filling is often used in dynamic compaction
for reducing the number of final test vectors [1]. The key
issue is how to select a secondary target fault which has
higher chances of being detected with the X-bits in a test
cube. Selection methods based on fault simulation by criti-

cal path tracing, independent faults, etc. have been shown to
be effective. Algorithmic X-filling is also used for reducing
shift power dissipation by properly re-assigning 0’s and 1’s
to the X-bits found by X-bit identification [9].

Merge-based X-filling is often used in static compaction for
reducing the number of test vectors [1, 22] as well as for
shift power reduction by carefully selecting the order of test
cubes to be merged by using a cost function reflecting shift
transition activity [8].

Random X-filling is conducted for remaining X-bits after
algorithmic or merge-based X-filling is done. Its purpose is
to reduce the number of test vectors since randomly assign-
ing 0’ and 1’s to the X-bits in a test cube often increases the
chances of detecting additional faults [1]. However, random
X-filling usually adversely affects test power dissipation [8].

2.3 Motivation

Previous X-filling methods are largely used for reducing the
number of test vectors [1, 21, 22], and there are a few X-
filling methods available for shift power reduction [8, 9].
However, there is no X-filling method for capture power
reduction yet. This is a serious problem as it leaves a sig-
nificant yield loss factor totally uncontained.

To solve this problem, we propose a novel algorithmic X-
filling method, called the LCP (Low-Capture-Power) X-
filling method, for reducing the number of transitions at the
outputs of scan flip-flops in capture mode. Test vectors
generated with this method have low capture power dissipa-
tion, resulting in less yield loss caused by faulted capture
operations. This method can be used in both dynamic com-
paction and static compaction, for test cubes generated dur-
ing ATPG or obtained by X-bit identification. In addition,
this method can be used with other X-filling methods to
achieve a balanced reduction effect among the number of
test vectors, shift power dissipation, and capture power
dissipation.

3. LCP X-Filling

3.1 Problem Formalization

A general full-scan circuit is shown in Fig. 2. It consists of
a combinational portion with m1 primary inputs (PIs) and
m2 primary outputs (POs) as well as n scan flip-flops (FFs).
The outputs of the scan FFs that feed the combinational
portion are pseudo primary inputs (PPIs) and the functional
inputs from the combinational portion to the scan FFs are
pseudo primary outputs (PPOs). Note that the number of
PPIs is the same as that of PPOs, while the number of PIs
may or may not be the same as that of POs. Also note that,
for the convenience of presentation, all scan FFs are as-
sumed to form one scan chain with SI as the scan input and
SO as the scan output. The X-filling method to be presented
in the following, however, can be readily extended for any
full-scan circuit with multiple scan chains.

In Fig. 2, v is a test cube with at least one X-bit. The PI

and PPI bits in v are denoted by an m1-bit vector <v: PI>
and an n-bit vector <v: PPI>, respectively. The combina-
tional portion is assumed to have logic function f, and its
functional response to v is f(v). The PO and PPO bits in f(v)
are denoted by an m2-bit vector <f(v): PO> and an n-bit
vector <f(v): PPO>, respectively.

SI

m1 Combinational
Portion

PIs

Scan
FFs

n
PPIs f

SO

m2

POs

n
PPOs

v f(v)

n

<v: PI>

<v: PPI>

<f(v): PO>

<f(v): PPO>

SI

m1 Combinational
Portion

PIs

Scan
FFs

n
PPIs f

SO

m2

POs

n
PPOs

v f(v)

n

<v: PI>

<v: PPI>

<f(v): PO>

<f(v): PPO>

Fig. 2 A General Full-Scan Circuit

If <v: PPI> and <f(v): PPO> are fully-specified, the result
of their bit-wise exclusive-OR operation is an n-bit vector,
denoted by <v: PPI> ⊕ <f(v): PPO>. Obviously, if the cor-
responding bits in <v: PPI> and <f(v): PPO> are different
as shown in Fig. 3, a transition, called capture transition in
this paper, will occur at the output of the scan FF in capture
mode. Obviously, the number of 1’s in <v: PPI> ⊕ <f(v):
PPO>, denoted by |<v: PPI> ⊕ <f(v): PPO>|, is the total
number of capture transitions for v.

PPI Scan
FF

PPO

SI

CK

SE = 0

1
0

Selected

Non-Selected

PPI Scan
FF

PPO

SI

CK

SE = 0

1
0

Selected

Non-Selected

Fig. 3 Capture Transition at a Scan Flip-Flop.

Since the number of capture transitions is closely correlated
with the circuit switching activity as demonstrated in [8],
the LCP X-filling problem can be formalized as follows:

LCP X-Filling Problem: Given a test cube v for a full-scan
circuit with combinational logic function f, assign 0’s and
1’s to the X-bits in v such that |<v: PPI> ⊕ <f(v): PPO>| is
minimized.

3.2 X-Filling Algorithm

Suppose that v is a test cube with at least one X-bit and f(v)
is the simulated response of the combinational portion of a
full-scan circuit to v. Note that f(v) may also have X-bits
due to the X-bits in v. Depending on the appearance of X-
bits in <v: PPI> and <f(v): PPO>, we define four X-cases as
shown in Table 1:

Table 1 X-Cases

<v: PPI>

<f(v): PPO>

without X
with X

without X with X
Case-1 Case-3
Case-2 Case-4

<v: PPI>

<f(v): PPO>

without X
with X

without X with X
Case-1 Case-3
Case-2 Case-4

The algorithm for LCP X-filling in each X-case is presented
next.

3.2.1 Case-1

In Case-1, since <v: PPI> and <f(v): PPO> have no X-bits,
|<v: PPI> ⊕ <f(v): PPO>|, the total number of capture transi-
tions, is already determined and cannot be changed irre-
spective of the logic values assigned to the X bits in <v: PI>.

Since v is a test cube with at least one X-bit and <v: PPI>
has no X-bits, <v: PI> must have at least one X-bit. There-
fore, X-filling in Case-1 can be targeted for any other pur-
pose, such as reducing the number of test vectors or shift
power dissipation, with X-filling methods mentioned in 2.2.

3.2.2 Case-2

In Case-2, since <v: PPI> has at least one X-bit, X-filling is
first conducted for <v: PPI> to reduce the number of cap-
ture transitions. This is achieved by replacing all X-bits in
<v: PPI> with the same logic values at the corresponding
bits in <f(v): PPO>, which has no X-bit. After this assign-
ment is done, Case-2 reduces to Case-1 since <v: PPI> no
longer has any X-bit. Then Case-1 X-filling can be con-
ducted for all the remaining X-bits in <v: PI>.

An example is shown in Fig. 4, where <v: PPI> = <X0X1>
and <f(v): PPO> = <0010>. First, 0 and 1 are assigned to
the first X-bit and the second X-bit, respectively, in <v:
PPI>. Then, only one X-bit remains in <v: PI>, which is
handled by Case-1 X-filling.

X
0
X
0
X
1

1
0
X
0
0
0
1
0

PI
PO

PPI PPO

v

f(v)

f
0 Assignment

1 Assignment
LCP X-Filling

X
0
X
0
X
1

1
0
X
0
0
0
1
0

PI
PO

PPI PPO

v

f(v)

ff
0 Assignment

1 Assignment
LCP X-Filling

Fig. 4 Assignment-Based X-Filling.

3.2.3 Case-3

In Case-3, <v: PI> has at least one X-bit since <v: PPI>
has no X-bit. In addition, <f(v): PPO> has at least one X-
bit. X-filling for the X-bits in <v: PI> is conducted in such a
way that as many X-bits as possible in <f(v): PPO> can have
the same values as the corresponding bits in <v: PPI>, in
order to reduce the number of capture transitions.

Whether an X-bit a in <f(v): PPO> can have the same value
as its corresponding bit b in <v: PPI> is determined by justi-
fication. For example, if b is 1, then one can try to justify 1
on a. If this is successful, 1 is placed on a; otherwise, 0 is
placed on a. Note that, during justification, the logic values
for some X-bits in <v: PI> will be determined.

An example is shown in Fig. 5, where <v: PPI> = <1011>
and <f(v): PPO> = <X010>. Obviously, placing 1 to the X-
bit in <f(v): PPO> reduces the number of capture transitions.
Thus, justification of 1 on the X-bit in <f(v): PPO> is con-
ducted. Suppose that this is successful if 0 is assigned to the
X-bit in <v: PI>. As a result, a fully-specified test vector v =

<001011> is obtained and its simulated response is f(v) =
<10101010>.

X
0
1
0
1
1

1
0
1
0
X
0
1
0

PI
PO

PPI PPO

v

f(v)

0LCP X-Filling

1 Justification
f

X
0
1
0
1
1

1
0
1
0
X
0
1
0

PI
PO

PPI PPO

v

f(v)

0LCP X-Filling

1 Justification
ff

Fig. 5 Justification-Based X-Filling.

It is possible that <f(v): PPO> has multiple X-bits. In this
case, the order of the X-bits being justified affects the suc-
cess ratio of justification; hence the number of reduced cap-
ture transitions. We propose the following criterion for se-
lecting an X-bit, based on the easiness of justification:

Criterion-1: Suppose that a1 and a2 are two X-bits in <f(v):
PPO>. We obtain the sets of X-bits in <v: PI>, denoted by
X(a1) and X(a2), that can be reached from a1 and a2, re-
spectively. If |X(a1)| > |X(a2)|, a1 is selected for justification
since more X-bits are available for justifying a logic value
on a1. If |X(a1)| = |X(a2)|, we further obtain the average lev-
els of all PIs with X-bits in X(a1) and X(a2), denoted by
L(a1) and L(a2), respectively. Note that levels are assigned
to all lines in a circuit from POs and PPOs. If L(a1) < L(a2),
a1 is selected for justification since the PIs with X-bits in
X(a1) are closer to the justification target of a1.

Once all X-bits in <f(v): PPO> are determined, Case-3 be-
comes Case-1. Then, Case-1 X-filling can be conducted for
all the remaining X-bits in <v: PI>.

3.2.4 Case-4

In Case-4, both <v: PPI> and <f(v): PPO> have X-bits. For
a bit-pair <a, b> consisting of a bit a in <v: PPI> and its
corresponding bit b in <f(v): PPO>, there are four possible
bit-pair types as summarized in Table 2:

Table 2 Bit-Pair Types

Type-A

a in <v: PPI>

Type-B

Type-C

0 or 1

X

0 or 1

X

0 or 1

0 or 1

X

XType-D

b in <f(v): PPO>

Type-A

a in <v: PPI>

Type-B

Type-C

0 or 1

X

0 or 1

X

0 or 1

0 or 1

X

XType-D

b in <f(v): PPO>

Obviously, there is no need to consider any Type-A bit-pair.
For other bit-pairs with at least one X, we process Type-B
and Type-C bit-pairs first. Only when there are no more
such bit-pairs, we move on to process Type-D bit-pairs.

If both Type-B and Type-C bit-pairs exist, it is necessary to
determine which type of bit-pairs to process first. Note that
an X-bit in <v: PPI> for a Type-B bit-pair indicates that a
capture transition can be avoided if a proper logic value is
assigned to the X-bit. Also note that an X-bit in <f(v): PPO>
for a Type-C bit-pair indicates that a proper logic value may

be successfully justified on the X-bit so that a capture tran-
sition can be avoided. Therefore, we propose the following
selection criterion for bit-pair selection:

Criterion-2: We compare the number of X-bits in <v: PPI>
for all Type-B bit-pairs and the number of X-bits in <f(v):
PPO> for all Type-C bit-pairs. If the former is larger than
the latter, all Type-B bit-pairs are processed first with the
Case-2 X-filling algorithm described in 3.2.2. If the latter is
larger than the former, all Type-C bit-pairs are processed
first with the Case-3 X-filling algorithm described in 3.2.3.

After X-filling for all Type-B and Type-C bit-pairs are con-
ducted, it is possible that Type-D bit-pairs still remain.
Suppose that <a, b> is such a bit-pair, where a in <v: PPI>
and b in <f(v): PPO> both have X. In this case, we first
check if 0 (1) can be assigned to both a and b in order to
avoid a capture transition. This can be conducted by placing
0 (1) on a and trying to justify 0 (1) on b. If this is success-
ful, we use 0 (1) for both a and b; otherwise, we use differ-
ent values for a and b.

It is possible that there are multiple Type-D bit-pairs. In this
case, we consider the multiple X-bits in <f(v): PPO> and
use the Criterion-1 proposed for Case-3 X-filling to deter-
mine the order of processing Type-D bit-pairs.

An example for Type-D is shown in Fig. 6, where <v: PPI>
= <1X11> and <f(v): PPO> = <1X10>. In this case, we try
placing 0 on the X-bit in <v: PPI> and justifying 0 on the X-
bit in <f(v): PPO>. Suppose that this is successful if 1 is
assigned to the X-bit in <v: PI>. As a result, a fully-
specified test vector v = <101011> is obtained and its simu-
lated response is f(v) = <10101010>. Note that one capture
transition is avoided in this case.

X
0
1
X
1
1

1
0
1
0
1
X
1
0

PI
PO

PPI PPO

v

f(v)

1

LCP X-Filling

0 Justification0 Assignment

f

X
0
1
X
1
1

1
0
1
0
1
X
1
0

PI
PO

PPI PPO

v

f(v)

1

LCP X-Filling

0 Justification0 Assignment

ff

Fig. 6 Assignment-Justification-Based X-Filling.

After Type-B, Type-C, and Type-D bit-pairs are processed,
Case-4 becomes Case-1 since both <v: PPI> and <f(v):
PPO> no longer have any X-bit. Then, Case-1 X-filling can
be conducted for all the remaining X-bits in <v: PI>.

3.3 X-Filling Procedure

The general procedure for LCP X-filling is illustrated in Fig.
7. A test cube v is processed based on its case type. For a
Case-4 test cube, its bit-pairs for <v: PPI> and <f(v): PPO>
will be further checked. If Type-B or Type-C bit-pairs exist,
they should be processed as in Case-2 or Case-3. If there
are only Type-D bit-pairs, assignment-justification will be
conducted for X-filling. The final result of this procedure is
a fully-specified test vector.

Case Type ?

Test Cube

1 2 3 4

Assignment

Justification

Criterion-1 Pair Type ?

B C

Criterion-2
B

C
D

Criterion-1

Assignment
Justification

Other
X-Filling

Fully
Specified

Test Vector

Only

.

Case Type ?

Test Cube

11 22 33 44

AssignmentAssignment

JustificationJustification

Criterion-1 Pair Type ?

B C

Criterion-2
B

C
D

Criterion-1

Assignment
Justification

Other
X-Filling

Fully
Specified

Test Vector

Only

.

Fig. 7 LCP X-Filling Procedure.

4. Experimental Results
X-filling experiments were conducted on ISCAS’89 circuits.
Since the major process was logic simulation, the total run
time for these circuits was very short and is not reported
here.

4.1 Dynamic X-Filling Results

Table 3 shows the results obtained by random X-filling and
LCP X-filling for test cubes generated in ATPG. In ATPG,
a test cube was generated for a primary fault. After that, the
X-bits in the test cube were used to detect a secondary fault.
This process was repeated until the number of detected sec-
ondary faults reached a threshold, denoted by Limit. Then,
the remaining X-bits in the test cube were filled randomly or
with the LCP method. In Table 3, the number of test vectors,
the average number of node transitions per test vector, and
the maximum number of node transitions for each case in
capture mode are shown under “# of Vec.”, “Ave. Trans.”,
and “Max. Trans.”, respectively.

Table 3 Results for Dynamic X-Filling

57

62

275

1133

2245

2757

3212

8255

8257

7289

s1196

s1238

s1423

s5378

s9234

s13207

s15850

s35932

s38417

s38584

Circuit

130

141

36

113

138

262

132

18

102

124

100

94.91

99.08

99.13

93.48

98.46

96.68

89.91

99.47

95.85

of
Vec.

Fault
Cov.

27.0

27.0

164.5

938.0

1647

2097

2077

6638

6543

3752

Max.
Trans.

Ave.
Trans.

6.8

6.0

135.1

412.6

972.8

763.7

977.0

4242

4397

2243

46

43

255

1099

2206

2126

2340

8255

7679

6287

6.2

6.0

139.6

407.4

1000

793

986

2993

4388

2240

46

43

268

977

2109

2220

2457

5797

6517

4525

Max.
Trans.

Ave.
Trans.

Random LCP

Max.
Trans.

Ave.
Trans.

No Limit Limit = 100

126

139

37

112

141

263

124

18

102

124

of
Vec.

129

146

45

115

145

262

119

38

118

135

of
Vec.

No Limit

57

62

275

1133

2245

2757

3212

8255

8257

7289

s1196

s1238

s1423

s5378

s9234

s13207

s15850

s35932

s38417

s38584

Circuit

130

141

36

113

138

262

132

18

102

124

100

94.91

99.08

99.13

93.48

98.46

96.68

89.91

99.47

95.85

of
Vec.

Fault
Cov.

27.0

27.0

164.5

938.0

1647

2097

2077

6638

6543

3752

Max.
Trans.

Ave.
Trans.

6.8

6.0

135.1

412.6

972.8

763.7

977.0

4242

4397

2243

46

43

255

1099

2206

2126

2340

8255

7679

6287

6.2

6.0

139.6

407.4

1000

793

986

2993

4388

2240

46

43

268

977

2109

2220

2457

5797

6517

4525

Max.
Trans.

Ave.
Trans.

Random LCP

Max.
Trans.

Ave.
Trans.

No Limit Limit = 100

126

139

37

112

141

263

124

18

102

124

of
Vec.

129

146

45

115

145

262

119

38

118

135

of
Vec.

No Limit

Table 3 shows that on average, LCP X-filling (Limit = ∞)
achieved 49.3% reduction for the average number of node
transitions and 13.3% reduction for the maximum number
of node transitions, compared with random X-filling.

Note that the smaller the value of Limit, the more remaining
X-bits in a test cube, thus the higher node transition reduc-
tion effect achieved by LCP X-filling. However, the smaller

the value of Limit, the larger the number of test vectors.
These contradicting trends were verified by experimenting
with three largest ISCAS’89 benchmark circuits, as shown
in Fig. 8. It is clear that a “good” value exists for Limit,
which can balance the node transition reduction effect and
the number of test vectors. In the case of Fig. 8, for exam-
ple, 100 is obviously such a value for Limit.

Secondary Fault Limit

s35932
s38417
s38584

Max. # of Node Transitions

0

3000

4000

5000

6000

7000

9000

∞ 400 300 200 100 50 30

Secondary Fault Limit

of Vectors

0

50

100

150

200

250

∞ 400 300 200 100 50 30

s35932
s38417
s38584

8000

Secondary Fault Limit

s35932
s38417
s38584

Max. # of Node Transitions

0

3000

4000

5000

6000

7000

9000

∞ 400 300 200 100 50 30

Secondary Fault Limit

of Vectors

0

50

100

150

200

250

0

50

100

150

200

250

∞ 400 300 200 100 50 30∞ 400 300 200 100 50 30

s35932
s38417
s38584

8000

Fig. 8 Impact of Secondary Fault Limit.

The experimental results for LCP X-filling (Limit = 100)
are also shown in Table 3. It can be seen that on average,
LCP X-filling (Limit = 100) can achieve 53.7% more reduc-
tion for the maximum number of node transitions, com-
pared with LCP X-filling (Limit = ∞), at the cost of 16.6%
more test vectors.

4.2 Static X-Filling Results

Table 4 shows the results obtained by random X-filling and
LCP X-filling for test cubes obtained by an X-bit identifica-
tion procedure [20] from a set of fully-specified test vectors.
As shown in Table 4, even with compacted test vectors an
average of 64.5% of all bits in a set of fully-specified test
vectors could be turned into X-bits without affecting its
fault coverage. These X-bits were then filled randomly or
with the LCP method. In Table 4, X (%) shows the percent-
age of X-bits identified from a set of fully-specified test
vectors, while all other items have the same meaning as in
Table 3.

Table 4 Results for Static X-Filling

s1196

s1238

s1423

s5378

s9234

s13207

s15850

s35932

s38417

s38584

Circuit

113

125

24

100

111

235

97

12

87

114

of
Vec.

Fault
Cov.
(%)

55.06

54.98

41.11

71.03

67.17

91.61

76.14

34.35

73.40

79.65

X
(%)

8.70

9.24

26.5

90.6

80.24

245.6

181.0

817.3

491.2

424.3

14

14

43

108

110

333

252

1533

592

785

1.62

1.78

20.63

40.82

34.36

74.27

66.78

569.0

177.1

193.9

10

9

34

91

61

244

173

1517

323

437

Max.
Trans.

Ave.
Trans.

Random LCP

Max.
Trans.

Ave.
Trans.

100

94.91

99.08

99.13

93.48

98.46

96.68

89.91

99.47

95.85

s1196

s1238

s1423

s5378

s9234

s13207

s15850

s35932

s38417

s38584

Circuit

113

125

24

100

111

235

97

12

87

114

of
Vec.

Fault
Cov.
(%)

55.06

54.98

41.11

71.03

67.17

91.61

76.14

34.35

73.40

79.65

X
(%)

8.70

9.24

26.5

90.6

80.24

245.6

181.0

817.3

491.2

424.3

14

14

43

108

110

333

252

1533

592

785

1.62

1.78

20.63

40.82

34.36

74.27

66.78

569.0

177.1

193.9

10

9

34

91

61

244

173

1517

323

437

Max.
Trans.

Ave.
Trans.

Random LCP

Max.
Trans.

Ave.
Trans.

100

94.91

99.08

99.13

93.48

98.46

96.68

89.91

99.47

95.85

Table 4 shows that on average, LCP X-filling achieved
45.2% reduction for the average number of node transitions
and 21.6% reduction for the maximum number of node tran-
sitions, compared with random X-filling.

5. Conclusions

This paper addressed a new test power reduction problem,
i.e. reducing capture power dissipation to avoid yield loss
caused by faulted test responses in capture mode. A novel
low-capture-power (LCP) X-filling method has been pro-
posed for assigning 0’s and 1’s to unspecified (X) bits in a
test cube in order to reduce the switching activity at FFs and
in the circuit for the resulting fully-specified test vector.
Experimental results have shown its effectiveness.

More evaluations are under way to assess the effect of the
LCP X-filling method directly through power consumption
instead of switching activity at flip-flops. Extension of the
LCP method to a double-capture scheme is also under way.

References
[1] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems

Testing and Testable Design, Computer Science Press, 1990.
[2] Y. Zorian, “A Distributed BIST Control Scheme for Complex VLSI

Devices,” Proc. VLSI Test Symp., pp. 4-9, 1993.
[3] P. Girad, “Survey of Low-Power Testing of VLSI Circuits,” IEEE

Design & Test of Computers, vol. 19, no. 3, pp. 82-92, 2002.
[4] T. Yoshida and M. Watari, “A New Approach for Low Power Scan

Testing,” Proc. Intl. Test Conf., pp. 480-487, 2003.
[5] R. Chou, K. Saluja, and V. Agrawal, “Scheduling Tests for VLSI

Systems under Power Constraints,” IEEE Trans. on VLSI Systems,
vol. 5, no. 6, pp. 175-185, 1997.

[6] S. Wang and S. Gupta, “ATPG for Heat Dissipation Minimization
during Test Application,” IEEE Trans. on Computers, vol. 47, no.
2, pp. 256-262, 1998.

[7] F. Corno, P. Prinetto, M. Redaudengo, and M. Reorda, “A Test
Pattern Generation Methodology for Low Power Consumption,”
Proc. VLSI Test Symp., pp. 35-40, 2000.

[8] R. Sankaralingam, R. Oruganti, and N. Touba, “Static Compaction
Techniques to Control Scan Vector Power Dissipation,” Proc. VLSI
Test Symp., pp. 35-40, 2000.

[9] S. Kajihara, K. Ishida, and K. Miyase, “Test Vector Modification
for Power Reduction during Scan Testing,” Proc. VLSI Test Symp.,
pp. 160-165, 2002.

[10] V. Dabholkar, S. Chakravarty, I. Pomeranz, and S. Reddy, “Tech-
niques for Minimizing Power Dissipation in Scan and Combina-
tional Circuits during Test Application,” IEEE Trans. on Com-
puter-Aided Design, vol. 17, no. 12, pp. 1325-1333, 1998.

[11] A. Chandra and K. Chakrabarty, “Combining Low Power Scan
testing and Test Data Compression for System-on-a-Chip,” Proc.
Design Automation Conf., pp. 166-169, 2001.

[12] A. Chandra and K. Chakrabarty, “Reduction of SoC Test Data
Volume, Scan Power and Testing Time Using Alternating Run-
Length Codes,” Proc. Intl. Conf. on Computer Aided Design, pp.
673-678, 2002.

[13] A. Hertwig and H. Wunderlich, “Low Power Serial Built-In Self-
Test,” Proc. European Test Workshop, pp. 49-53, 1998.

[14] R. Sankaralingam, R. Oruganti, and N. Touba, “Reducing Power
Dissipation during Test Using Scan Chain Disable,” Proc. VLSI
Test Symp., pp. 319-324, 2001.

[15] Y. Bonhomme, P. Girard, C. Landrault, and S. Pravossoudovitch
“Power Driven Chaining of Flip-Flops in Scan Architectures,” Proc.
Intl. Test Conf., pp. 796-803, 2002.

[16] J. Saxena, K. Butler, and L. Whetsel, “A Scheme to Reduce Power
Consumption during Scan Testing,” Proc. Intl. Test Conf., pp. 670-
677, 2001.

[17] O. Sinanoglu and A. Orailoglu, “Scan Power Minimization through
Stimulus and Response Transformations,” Proc. Design, Automa-
tion and Test in Europe, pp. 404-409, 2004.

[18] S. Gerstendoerfer and H. Wunderlich, “Minimized Power Con-
sumption for Scan-Based BIST,” Proc. Intl. Test Conf., pp. 77-84,
1999.

[19] S. Wang, “Generation of Low-Power-Dissipation and High-Fault
Coverage Patterns for Scan-Based BIST,” Proc. Intl. Test Conf., pp.
834-843, 2002.

[20] K. Miyase and S. Kajihara, “XID: Don't Care Identification of Test
Patterns for Combinational Circuits,” IEEE Trans. Computer-Aided
Design, Vol. 23, No. 2, pp. 321-326, Feb. 2004.

[21] S. Kajihara, K. Taniguchi, K. Miyase, I. Pomeranz, S. Reddy, “Test
Data Compression Using Don’t-Care Identification and Statistical
Encoding,” Proc. Asian Test Symp., pp. 67-72, 2002.

[22] X. Lin, J. Rajski, I. Pomeranz, S. M. Reddy, “On Static Test Com-
paction and Test Pattern Ordering for Scan Designs,” Proc. Intl.
Test Conf., pp. 1088-1097, 2001.

	Abstract
	1. Introduction
	2. Background
	2.1 Test Cube Handling
	2.2 Previous X-Filling Methods
	2.3 Motivation

	3.
LCP X-Filling
	3.1 Problem Formalization
	3.2 X-Filling Algorithm
	3.2.1 Case-1
	3.2.2 Case-2
	3.2.3 Case-3
	3.2.4 Case-4

	3.3 X-Filling Procedure

	4. Experimental Results
	4.1 Dynamic X-Filling Results

	5. Conclusions
	References
	Return to Table of Contents

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /Batang
 /BatangChe
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Dotum
 /DotumChe
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGMaruGothicMPRO
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPSeikaishotai
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGSeikaishotai
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSSeikaishotai
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /Impact
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MingLiU
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MS-UIGothic
 /MVBoli
 /Myriad-BdWeb
 /Myriad-CnItWeb
 /Myriad-CnWeb
 /Myriad-ItWeb
 /Myriad-Web
 /NewGulim
 /NSimSun
 /OCRB
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PMingLiU
 /Raavi
 /Shruti
 /SimHei
 /SimSun
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

